

HOSTAFORM®

POM copolymer Antistatical modified; medium viscosity injection molding grade; the antistatical effect improves, when the molding part absorbs enough humidity; good chemical resistance to solvents, fuel and strong alkalis as well as good hydrolysis resistance; high resistance to thermal and oxidative degradation. Hostaform C 9021 AS is suggested for dissipation of minor buildup of static electricity that might occur with standard type grades. However, it is not intended for use in fuel system components where static dissipation is critical to part performance. Please refer to Celanese's ESD (electrostatic dissipative) grades for those applications. Preliminary Datasheet

Product information

Resin Identification	POM		ISO 1043
Part Marking Code	>POM<		ISO 11469
Rheological properties			
Melt volume-flow rate	8.5	cm ³ /10min	ISO 1133
Temperature	190		
Load	2.16	kg	
Moulding shrinkage, parallel	1.9		ISO 294-4, 2577
Moulding shrinkage, normal	1.8	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	2750	MPa	ISO 527-1/-2
Tensile stress at yield, 50mm/min	63	MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min	10	%	ISO 527-1/-2
Nominal strain at break	30		ISO 527-1/-2
Charpy impact strength, 23°C		kJ/m²	ISO 179/1eU
Charpy impact strength, -30 °C		kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m ²	ISO 179/1eA
Charpy notched impact strength, -30°C	5.5 0.37 ^[C]	kJ/m²	ISO 179/1eA
Poisson's ratio	0.37		
[C]: Calculated			
Thermal properties			
Melting temperature, 10°C/min	166		ISO 11357-1/-3
Coefficient of linear thermal expansion	110	E-6/K	ISO 11359-1/-2
(CLTE), parallel			
Electrical properties			
Surface resistivity	1E12	Ohm	IEC 62631-3-2
Physical/Other properties			
Density	1410	kg/m ³	ISO 1183
Injection			
Drying Recommended	no		
Drying Temperature	100	°C	
Drying Time, Dehumidified Dryer	3 - 4		
Processing Moisture Content	≤0.2	%	

Printed: 2025-05-30

HOSTAFORM®

200 °C
190 °C
210 °C
≤0.3 m/s
100 °C
80 °C
120 °C
60 - 120 MPa

Characteristics

Processing	Injection Moulding
Delivery form	Pellets
Additives	Release agent
Special characteristics	Static dissipative

Additional information

Injection molding

Preprocessing

General drying is not necessary due to low moisture absorption of the resin.

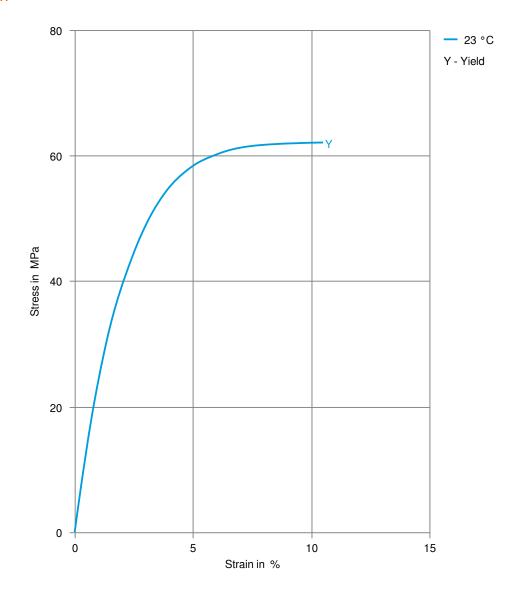
In case of bad storage conditions (water contact or condensed water) the use of a recirculating air dryer (100 to 120 °C / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,2 %

Processing

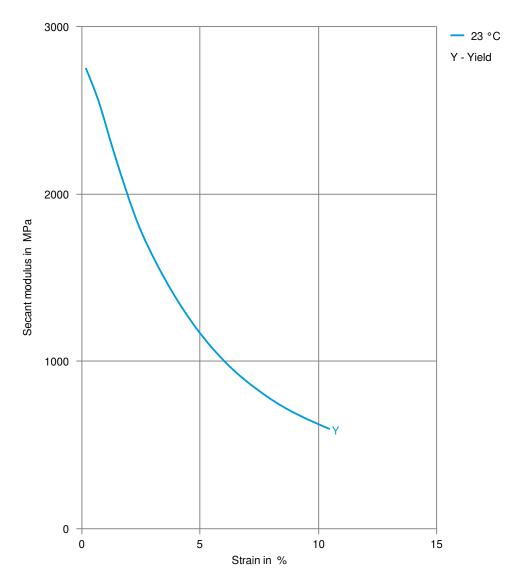
Standard injection moulding machines with three phase (15 to 25 D) plasticating screws will fit.

Postprocessing


Conditioning e.g. moisturizing is not necessary.

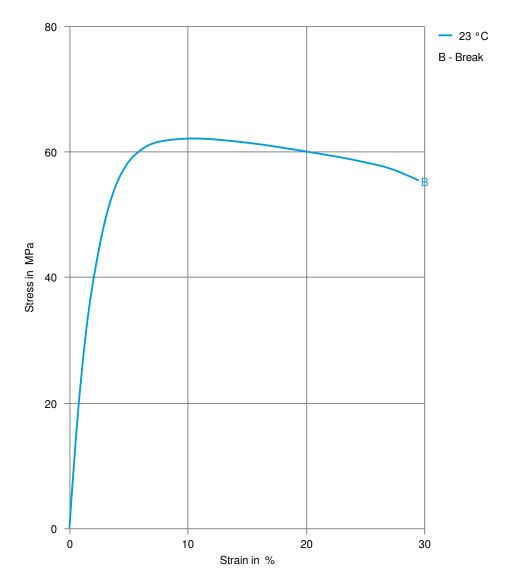
HOSTAFORM®

Stress-strain



HOSTAFORM®

Secant modulus-strain



HOSTAFORM®

Stress-strain, 50mm/min

HOSTAFORM®

Secant modulus-strain, 50mm/min

Printed: 2025-05-30

Page: 6 of 6

Revised: 2024-08-08 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. Contained in this publication is accurate; however, we do not assume any liability of the dusers to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material industion for handling each material th

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.